Synthecon: 3D Culture Systems for 3D World!

Research Spotlight

University of Ferrara, Italy, May 2016

"Osteoblasts from normal bone chips (hOBs) or from jawbone of patients taking bisphosphonates (hnOBs) were co-cultured with monocytes (hMCs) either in static (3D-C) or dynamic (3D-DyC) condition using the RCCS-4™ bioreactor for 3weeks. Cell aggregates were characterized for viability, histological features and specific osteoclastic and osteogenic markers.

In all tested conditions hOBs supported the formation of mature osteoclasts (hOCs), without differentiating agents or exogenous scaffolds. 3D-DyC condition associated with a ground based condition (Xg) rather than modeled microgravity (μXg) produced aggregates with high level of osteogenic markers including Osteopontin (OPN), Osterix (OSX), Runx2 and appreciable bone mineral matrix. hnOBs co-cultured with hMCs in 3D-Dyc/Xg condition generated OPN and mineral matrix positive aggregates.


We optimized a 3D co-culture system with a limited amount of cells preserving viability and functionality of bone cellular components and generating bone-like aggregates also by using cells from jawbone necrotic tissue. The feasibility to obtain from poor-quality bone sites viable osteoblasts able to form aggregates when co-cultured with hMCs, allows to study the development of autologous implantable constructs to overcome jawbone deficiency in patients affected by MRONJ (Medication-Related Osteonecrosis of the Jaws)."

View the abstract here

Single Use 3D BioreactorsAutoclavable 3D BioreactorsStem Cell Culture SystemsPerfusion Bioreactors Nanobiomatrix ScaffoldsBiostructure Matrix Scaffolds
Synthecon, Incorporated | 8977 Interchange Dr. | Houston, Texas 77054 | (713) 741-2582 | Toll Free (800) 853-0740
Website by SinyakCreative
© 2022 Synthecon, Incorporated, All Rights Reserved